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Stochastic Gravity
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We give a summary of the status of current research in stochastic semiclassical
gravity and suggest directions for further investigations. This theory generalizes the
semiclassical Einstein equation to an Einstein±Langevin equation with a stochastic
source term arising from the fluctuations of the energy-momentum tensor of
quantum fields. We mention recent efforts in applying this theory to the study of
black hole fluctuation and backreaction problems, linear response of hot flat space,
and structure formation in inflationary cosmology. To explore the physical meaning
and implications of this stochastic regime in relation to both classical and quantum
gravity, we find it useful to take the view that semiclassical gravity is mesoscopic
physics and that general relativity is the hydrodynamic limit of certain spacetime
quantum substructures. We view the classical spacetime depicted by general
relativity as a collective state and the metric or connection functions as collective
variables. Three basic issuesÐ stochasticity, collectivity, correlationsÐ and three
processesÐ dissipation, fluctuations, decoherence Ð underscore the transformation
from quantum microstructure and interaction to the emergence of classical
macrostructure and dynamics. We discuss ways to probe into the high-energy
activity from below and make two suggestions: via effective field theory and the
correlation hierarchy. We discuss how stochastic behavior at low energy in an
effective theory and how correlation noise associated with coarse-grained higher
correlation functions in an interacting quantum field could carry nontrivial
information about the high-energy sector. Finally, we describe processes deemed
important at the Planck scale, including tunneling and pair creation, wave scattering
in random geometry, growth of fluctuations and forms, Planck-scale resonance
states, and spacetime foams.

1. INTRODUCTION

1.1. Semiclassical Gravity from a Quantum Open System Viewpoint

Starting from the well-cultivated and familiar terrain of quantum field
theory in curved spacetime [1] in our search into deeper structures beyond

semiclassical gravity with focus on the backreaction problem [2 ], we came
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to a crossroad 10 years ago. Having understood the real physical meaning

of dissipation in the effective dynamics of spacetime generated by the backre-

action of particle creation [3] with the help of the Schwinger ±Keldysh closed-
time-path formalism [4 ], we began to turn our attention to possible existence

of fluctuations generated by these processes. Following the dicta of nonequi-

librium statistical mechanics, we proposed to view semiclassical gravity as

a quantum open system [5 ]. The discrepancies which exist between the

matter and gravity sectors (e.g., the heavy Planck mass which allows a

Born±Oppenheimer approximation to be taken in the transition of quantum
cosmology to semiclassical gravity [6]) enable one to treat classical spacetime

as the `system’ of interest and quantum matter field as the `environment’ in

the Langevin sense (e.g., refs. 7).

This then prompted us to take a closer look at the influence functional

approach [8] to the quantum Brownian model [9 ] because we are interested

in a formalism which keeps manifest self-consistency in treating the backreac-
tion of the environment on the system, especially on the relation between

dissipation, fluctuations, noise, and decoherence [10], the latter being a central

issue in the investigation of the transition from quantum to classical [11, 12 ].

Two sets of relations were of interest to us: The first set is between dissipation

and fluctuations. The second set is between noise and decoherence. The
fluctuation-dissipation relation is of course well known [13], but it is usually

assumed to be valid for systems at or close to equilibrium, and in fact usually

derived with linear response theory (e.g., ref. 14). It would be easy to extract

the fluctuations from the dissipation if such a relation holds also for ostensibly

nonequilibrium systems as in a cosmological backreaction problem, i.e.,

between classical dynamical spacetimes and evolving quantum fields.
Whether such a relation exists in semiclassical gravity is another crucial

question asked in ref. 5. If so, what is the nature of such noises? We posited

that such a relation should also exist in nonequilibrium systems such as

that encountered in particle creation in a dynamical gravitational field. Our

reasoning was that such a relation comes about as a relation between two

subsystemsÐ after one is being coarse-grained into an environmentÐ which
when traced back should reflect the unitarity condition for the dynamics of

the original closed system. With this, we can then associate fluctuations or

noise in the quantum field with dissipation in the spacetime dynamics, and

since dissipation is generally nonlocal, we asserted that the noise generated

in particle creation would generally be multiplicative and colored. These

conjectures were realized in later investigations.

1.2. Dissipation, Fluctuations, Noise, and Decoherence

In the same time frame when these questions about dissipation and noise

were investigated by the author, the issue of decoherence of quantum systems
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and the emergence of classicality was pursued by a number of researchers

coming from different backgrounds in the 198 0s, using statistical mechanical

concepts and methods. Specially relevant to our subject matter is decoherence
in quantum cosmology and the semiclassical gravity limit [6]. The source of

noise and the role it plays in this context were important issues. This brings

in the second pair of relations mentioned above, that between noise and

decoherence. Such a relation was suggested in ref. 10 using the Brownian

motion model and Langevin dynamics as a guide. Independently, Gell-Mann

and Hartle [15 ] in an excellent paper discussed how noise is instrumental to
the emergence of classical equations of motion from quantum dynamics and

how it regulates the stability of classical structures.

On the technical level, the above evolution and linkage of concepts on

dissipation, noise, and decoherence was facilitated by the closed-time-path,

influence functional, and decoherence functional formalisms. Just as the

Schwinger±Keldysh effective action [4] enabled us to get a real and causal
equation of motion [3], and the Feynman±Vernon influence functional [8]

enabled us to identify the noise kernel [16±18 ] and adopt the proper statistical

mechanical interpretation of noise in quantum field theory, the decoherence

functional of Gell-Mann and Hartle and the consistent history formalism of

Griffith and Omnes address the decoherence of histories and the emergence of
quasiclassical domains. These three formalisms are shown (or demonstrated in

specific models) to be closely related. (For the relation between CTP and IF,

see refs. 18 and 19, for that between IF and DF, see refs. 20, 21, and 23.) They

constitute the formal basis for establishing a new regime between semiclassical

and quantum physics named the stochastic (semiclassical) regime.

Thus, viewing semiclassical gravity as an open system enabled us to link
up with inquiries of a fundamental nature such as the relation of classical,

stochastic, and quantum and tap into the conceptual and technical resources in

this endeavor. It opened up a new horizon where some of the basic issues of

quantum mechanics such as decoherence and the emergence of the classical

world (classical spacetime) can be addressed in statistical mechanical theoretical

terms; and the formal tools of quantum field theory such as the effective
action method can be used to quantify statistical mechanical notions and depict

processes such as dissipation and noise (from activities of the quantum vacuum

of matter fields). With these ideas and methods at work, the stage was set

around 1993 for probing into a deeper level of structure of gravity beyond the

semiclassical theory, which we call stochastic semiclassical gravity. (For a

summary of work in this first stage 1989±1993, see, e.g., refs. 24 and 25.)

1.3. Einstein ± Langevin Equation

The next 3 years saw the developement of such a theory centering on

the quantification of noises associated with quantum field processes [16] and
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the discovery of a new equation in this regime known as the Einstein±

Langevin equation [18, 25±27 ] which relates the dissipative dynamics of

spacetime and the fluctuations in the quantum matter fields. It has the form
of a semiclassical Einstein equation (which contains a dissipative term from

the dissipation kernel in the influence action), but with an additional stochastic

source term (from the noise kernel in the influence action).

Let me illustrate this theory with a brief sketch of the example of

a conformally coupled scalar field in a weakly perturbed (anisotropic or

inhomogeneous) spatially flat Friedmann±Lemaitre±Robertson±Walker
(FLRW) universe with metric gRW

m n plus small perturbations h m n ,

g m n (x) 5 gRW
m n 1 h m n [ a( h )2gÄ m n (1)

Here h is the conformal time related to the cosmic time t by dt 5 a( h ) d h .

In this form the metric is conformally related [via conformal factor a( h ) ] to

the Minkowski metric h m n and its perturbations hÄ m n (x):

gÄ m n 5 h m n 1 hÄ m n (x) (2)

The perturbations h m n can be homogeneous (the case 5 d a2 was treated by

Calzetta and Hu [18]), or anisotropic (as in a Bianchi type I case treated by

Hu and Sinha [25 ]), or inhomogeneous (treated by Campos, Martin, and

Verdaguer [27, 23]). Here we follow the latter work.

The classical action for a free massless real scalar field F (x) is given by

Sf [g m n , F ] 5 2
1

2 # d nx ! 2 g [g m n - m F - n F 1 j (n)R F 2 ] (3)

where R is the Ricci curvature scalar for the metric g m n and j (n) 5 (n 2 2)/

[4(n 2 1) ], n being the spacetime dimension, is the coupling of the field to

the spacetime, with j (4) 5 0 and 1/6 corresponding to minimal and conformal

couplings, respectively. We consider a massless conformally coupled scalar

field here. Define a conformally related field F Ä (x) [ a( h )(n/2 2 1) F (x); the
action Sf (after one integration by parts)

Sf [gÄ m n , F Ä ] 5 2
1

2 # d nx ! 2 gÄ [gÄ m n - m F Ä - n F Ä 1 j (n)RÄ F Ä 2 ] (4)

takes the form of an action for a free massless conformally coupled real

scalar field F Ä (x) in a spacetime with metric gÄ m n . In this case it is a nearly

flat spacetime. As the physical field F (x) is related to the field F Ä (x) by a
power of the conformal factor, a positive-frequency mode of the field F Ä (x)

in flat spacetime will correspond to a positive-frequency mode in the confor-

mally related space. One can thus establish a quantum field theory in the

conformally related space by use of the conformal vacuum [1]. Quantum
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effects such as particle creation arises from the breaking of conformal flatness

of the spacetime produced by the perturbations h m n (x).

1.3.1. Semiclassical Einstein Equation

The Einstein equation for classical gravity is

G m n [g ] 1 L g m n 5 8 p GT c
m n (5)

where G is the Newton constant, L is the cosmological constant, g m n is the

spacetime metric, G m n is the Einstein tensor, and T c
m n is the energy-momentum

tensor of classical matter or fields. One now adds the quantum field as a

source, and gets the semiclassical Einstein equation (SCE)

G m n [g ] 1 L g m n 5 8 p G(T c
m n 1 T q

m n ) (6)

where T q
m n [ ^ T m n & q is the expectation value of the stress tensor operator in

some quantum state of the matter field F . In general there are ultraviolet

divergences in ^ T m n & q. To remove or cure them one introduces regularization
or renormalization procedures by adding counterterms or absorbing them into

the cosmological constant, the Newton constant, and the coupling constants

of the curvature-squared terms corresponding to the quartic, quadratic, and

logarithmic divergences [1]. As a result the renormalized SCE equation takes

the form

(G m n [g ] 1 L g m n ) 2 l2P ( a A m n 1 b B m n ) [g ] 5 8 p G ^ TÃR
m n & [g ] (7)

where G, L , a , and b are now renormalized coupling constants and lP [
! 16 p G is the Planck length. A m n and B m n are divergenceless local curvature

tensors defined by

A m n (x) [
1

! 2 g

d
d g m n # d 4x ! 2 g C a b r s C a b r s

5
1

2
g m n C a b r s C a b r s 2 2R m a b r R n

a b r 1 4R m a R n
a

2
2

3
RR m n 2 2NgR

m n 1
2

3
R; m n 1

1

3
g m n NgR (8)

where C a b r s is the Weyl tensor, and

B m n (x) [
1

! 2 g

d
d g m n # d 4x ! 2 gR2

5
1

2
g m n R2 2 2RR m n 1 2R; m n 2 2g m n NgR (9)
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where R is the Ricci scalar. The divergence-free tensor ^ TÃR
m n & [g ] is the expecta-

tion value in some quantum state of the renormalized stress tensor operator

TÃR
m n [g ] of the field F Ä .

For a massless conformally coupled scalar field in the metric (1) above,

^ T m n & q has the form (the subscripts 0, 1 in parentheses denote, respectively,

zeroth and first order in h m n ) [27]

^ T m n
( 0) & q 5 l F H m n

(0) 2
1

6
B m n

( 0) G
^ T m n

(1) & q 5 l F (H m n
(1) 2 2R( 0)

a b C m a n b
(1) ) 2

1

6
B m n

(1)

1 3a 2 3 1 2 4(C m a n b
(1) lna), a b 1 # d 4y A m n

(1)( y)K(x 2 y; m Å ) 2 G (1 0)

where the constant l 5 1/288 0p 2 characterizes one-loop quantum correction

terms (which include the trace anomaly and particle creation processes) and
m Å is a renormalization parameter. Here H m n (x) arises from the counterterms

in the renormalization of the energy-mementum tensor (see, e.g., ref. 28) and

is related to A m n , B m n above:

H m n (x) [ 2 R m a R n
a 1 2±3 RR m n 1 1±2 g m n R a b R a b 2 1±4 g m n R2 (11)

I call attention to the existence of a dissipation term (kernel K ) above describ-

ing the backreaction of particle creation on the background spacetime dynam-

ics [3, 22 ]. All terms in the semiclassical Einstein equation originating from
renormalization and backreaction, including the dissipative kernel, are famil-

iar from model calculations done in the 1970s and 198 0s (see, e.g., refs. 2).

One needs the CTP effective action [4 ] to derive the correct SCE which is

real and causal [3, 22].

1.3.2. Stochastic Semiclassical Einstein Equation

The stochastic semiclassical Einstein or Einstein±Langevin equation

(ELE) [18, 26, 25 ] differs from the semiclassical Einstein equation (SCE)

by the presence of a stochastic term measuring the fluctuations of quantum

sources (arising from the difference of particles created in neighboring histor-

ies [18 ]) which is intrinsically linked to the dissipation term in the dynamics
of spacetime. Two points are noteworthy: (a) The fluctuations and dissipation

kernels (decipherable from the influence action) obey a fluctuation-dissipation

relation which embodies the backreaction effects of quantum fields on classi-

cal spacetime. (b) The stochastic source term engenders metric fluctuations.
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The semiclassical Einstein equation depicts a mean-field theory which

one can retrieve from the Einstein±Langevin equation by taking a statistical

average with respect to the noise distribution. We used the influence functional
formalism to extract these new information [25, 27 ]. The stochastic semiclas-

sical Einstein equation, or Einstein±Langevin equation, takes the form

G m n [g ] 1 L g m n 5 8 p G(T c
m n 1 T qs

m n )

T qs
m n [ ^ T m n & q 1 T s

m n (12)

The new term T s
m n 5 2 t m n , which is of classical stochastic nature, measures

the fluctuations of the energy-momentum tensor of the quantum field. Define

tÃm n (x) [ TÃm n (x) 2 ^ TÃm n (x) & IÃ (13)

(Such a tensor is computed in the backgound metric, not the perturbed metric.)

It is related to the noise kernel N m n r s bitensor by

4N m n r s (x, y) [ 1±2 ^ {tÃm n (x), tÃr s ( y)} & (14)

where { } means taking the symmetric product. The noise kernel appears in
the real part of the influence action.

The noise kernel is free of ultraviolet divergence, as one can see from

its definition and the fact that the ultraviolet behavior of TÃm n and ^ TÃm n & is the

same; thus one can replace TÃm n by TÃRm n in these equations. The noise kernel

defines a real, classical Gaussian stochastic symmetric tensor field t m n which

is characterized to lowest order by the following correlators:

^ t m n (x) & t 5 0, ^ t m n (x) t r s ( y) & t 5 N m n r s (x, y) (15)

where ^ & t means taking a statistical average (for simplicity no higher order

correlations are assumed). Since TÃRm n is self-adjoint, one can see that N m n r s

is symmeric, real, positive, and semidefinite. Furthermore, as a consequence

of (14) and the consevation law ¹ m TÃRm n 5 0, this stochastic tensor is diver-
genceless in the sense that ¹ m t m n 5 0 is a deterministic zero field. Also

g m n t m n (x) 5 0, signifying that there is no stochastic correction to the trace

anomaly (if T m n is traceless). Here all covariant derivatives are taken with

respect to the background metric g m n , which is a solution of the semiclassical

equations. Taking the statistical average of (12), as a consequence of the

noise correlation relation (15),

^ T qs
m n & t 5 ^ T m n & q (16)

we recover the semiclassical Einstein equation (6).

Now for a spacetime with background metric g m n and weak gravitational

perturbation h m n the EL equation to linear order in h m n has the form
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(G m n [g 1 h ] 1 L (g m n 1 h m n )) 2 2l2
P( a A m n 1 b B m n ) [g 1 h ]

5 8 p G( ^ TÃRm n & [g 1 h ] 1 2 t m n ) (17)

The symmetry and divergenceless of the stochastic tensor in the background
metric guarantee the consistency of this semiclassical Einstein±Langevin

equation. This equation gives the first-order correction to semiclassical gravity

in the sense that it incorporates the correlation of T m n . The distinct feature

is that it predicts the existence of a stochastic component in the metric

hs
m n which we call metric fluctuations. It is induced by the quantum stress

tensor fluctuations. Since the stress tensor fluctuations are defined on the

background metric g m n , the stochastic field t m n does not depend on the metric

perturbations hc
m n . Therefore Eq. (17) is a linear stochastic equation for h m n

with an inhomogeneous term t m n ; its solution can be formally written as the

functional h m n [t ]. Taking the statistical average of Eq. (17), one sees that the

metric g m n 1 ^ h m n & t must be a solution of the semiclassical Einstein equation
linearized around g m n . By the gauge invariance of Eq. (17) it is clear that if

h m n is a solution of this equation, h8m n 5 h m n 1 ¹ m z n 1 ¹ n z m , where z m (x) is

a Gaussian stochastic field on the background spacetime, is a physically

equivalent solution.

For the example of a perturbed spatially flat FLRW universe with a

quantum scalar field F the tensor t m n (x) is given by [27 ]

t m n (x) 5 2 2 - a - b j m a n b (x) (18)

which is seen to be symmetric and traceless, i.e., t m n (x) 5 t n m (x) and t m
m (x)

5 0. The stochastic correction to the stress tensor has vanishing divergence
with respect to the background metric.

In this problem the tensor j m n a b (x) has the symmetries of the Weyl

tensor, i.e., it has the symmetries of the Riemann tensor and vanishing trace

in all its indices. It is characterized completely by the noise kernel N(x 2 y)

(the probability distribution for the noise is Gaussian) [25, 27 ]

^ j m n a b (x) & j 5 0

^ j m n a b (x) j r s l u ( y) & j 5 T m n a b r s l u N(x 2 y) (19)

Here T m n a b r s l u is the product of four metric tensors (in such a combination

that the right-hand side of the equation satisfies the Weyl symmetries of the

two stochastic fields on the left-hand side). Its explicit form is given in ref. 27.
As mentioned above, the new source term 2 t m n will produce a stochastic

contribution hs
m n to the spacetime metric, i.e., h m n 5 hc

m n 1 hs
m n . Considering

a flat background spacetime [setting a 5 1 in (1) and dropping the tilde on

h m n for simplicity], one obtains, by adopting the harmonic gauge condition



Stochastic Gravity 2995

(hs
m n 2 1±2 h m n h

s), n 5 0, a linear equation for the metric fluctuations (off

Minkowski spacetime here) hs
m n

Nhs
m n 5 16 p GT s

m n

T s
m n 5 2 t m n 5 2 4 - a - b j m a n b (2 0)

The computation of the noise correlations and the solution of these equations

have been given by Campos and Verdaguer [27 ]. Calzetta et al. have solved

the Einstein±Langevin equation for a cosmological problem with both noise
and dissipation [29 ].2 Recently Martin and Verdaguer [23 ] have revisited this

problem. They solved the stochastic semiclassical Einstein equation (17)

around the Minkowski spacetime h m n for a massless, conformally coupled

scalar field in its vacuum state ) 0& . In this case ^ 0) T R
m n [h ]) 0& 5 0 and if we

take L 5 0, the Minkowski metric is a trivial solution of the semiclassical

Einstein equation (7). Since the vacuum state is not an eigenstate of
TÃR

m n [h ], fluctuations of the stress tensor are present. Equation (17) reduces

in this case to the linearized SCE equations derived by Horowitz [30] for

studying the semiclassical stability of flat spacetime, but with a new inhomo-

geneous source term t m n . Martin and Verdaguer evaluated the two-point

correlation function of the linearized Einstein tensor and found that for

spacelike-separated points
-

x and
-

x 8 it goes like

1

l2P

1

)
-

x 2
-

x 8 ) 2
exp 1 2 ) -

x 2
-

x 8 )
lP 2 (21)

The above result shows that the quantum field fluctuations induce metric

fluctuations with a correlation length lP. The appearence of Planck length

here is not surprising since for a massless scalar field coupled to gravity

there is no other length scale in the problem. It is noteworthy that this result

is not analytic in lP and thus it could not have been obtained by a perturbative
expansion in the Planck length. Of course, this semiclassical result is expected

to break down at Planck scale, and quantum fluctuations of the metric beyond

that induced by linear perturbations (gravitons can be treated as a quantum

field source as each is identical to two components of massless, minimally

coupled scalar field) would become important.

For other recent developments, I would like to mention a derivation of
the EL equation from renormalization group considerations by Lombardo

2 A comment from E. Verdaguer: In Eq. (20), Campos and Verdaguer [27] neglected the
dissipation term, or more precisely, the expectation value of the stress tensor to linear order
in h m n which is of the same order as T s

m n is stochastic. For this reason the solution they found
was only formal; it is divergent in fact. One can get a finite result if one starts the perturbation
at some initial time zero (in the paper they start at t 5 2 ` ). This is similar to having a
particle in a bath with no dissipation for a very long time; the fluctuations will take it very
far. In ref. 29 the calculation was only for the homogeneous conformal mode.
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and Mazzitelli [31 ], and the application of the CTP-IF formalism to the study

of backreaction of Hawking radiation in 2D dilatonic black hole spacetimes

by Lombardo et al. [32].

1.4. Stochastic Gravity in Relation to Semiclassical and Quantum
Gravity

Stochastic gravity is a regime intermediate between semiclassical and

quantum gravity. It is perhaps instructive to examine the distinction among

these three theories.

We use the example above for gravitational perturbations h m n in a FLRW

universe with background metric g m n driven by the expectation value of the

energy-momentum tensor of a scalar field F , as well as its fluctuations tÃm n (x).
Let us compare the stochastic with the semiclassical and quantum equations

of motion for the metric perturbation field h (we will use schematic notations

for simplicity). The semiclassical equation is given by

Nh 5 ^ TÃ& (22)

where ^ & denotes taking the quantum average (e.g., the vacuum expectation

value) of the operator enclosed. Its solution can be written in the form

h 5 # G ^ TÃ& , h1h2 5 # # G1G2 ^ TÃ& ^ TÃ& (23)

The quantum (Heisenberg) equation

NhÃ5 TÃ (24)

has solutions

hÃ5 # GTÃ, ^ hÃ1, hÃ2 & 5 # # G1G2 ^ TÃTÃ& hÃ, f Ã (25)

where the average is taken with respect to the quantum fluctuations of both

the gravitational and the matter fields. Now for the stochastic equation,

we have

Nh 5 ^ TÃ& 1 t (26)

with solutions3

3 In this schematic form we have not displayed the homogeneous solution carrying the informa-
tion of the (maybe random) initial condition. This solution will exist in general, and may even
be dominant if dissipation is weak. When both the uncertainty in initial conditions and the
stochastic noise are taken into account, the Einstein±Langevin formalism reproduces the exact
graviton two-point function in the linearized approximation. Of course, it fails to reproduce
the expectation value of observables which could not be written in terms of graviton occupation
numbers, and in this sense it falls short of full quantum gravity. I thank E. Calzetta for
this comment.
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h 5 # G ^ TÃ& 1 # G t , h1h2 5 # # G1G2 [̂ TÃ& ^ TÃ& 1 ( ^ TÃ& t 1 t ^ TÃ& ) 1 t t ]

(27)

We now take the noise average ^ & j . Recall that the noise is defined in terms

of the stochastic sources t as

^ t & j 5 0, ^ t 1 t 2 & j [ ^ TÃ1TÃ2 & 2 ^ TÃ1 & ^ TÃ2 & (28)

we get

^ h1h2 & j 5 # # G1G2 ^ TÃTÃ& f Ã (29)

Note that the correlation of the energy-momentum tensor appears just as in

the quantum case, but the average here is only over noise from quantum
fluctuations of the matter field.

As seen above, while the semiclassical regime describes the effect of a

quantum matter field only through its mean value (vacuum expectation value),

the stochastic regime includes the fluctuations of quantum fields as reflected

in the new stochastic term in the energy-momentum tensor. Thus stochastic
gravity carries some information about the correlation of fields (and the

related phase information) which is absent in semiclassical gravity. Here we

have invoked the relation between fluctuations and correlation, a variant form

of the fluctuation-dissipation relation. This feature pushes stochastic gravity

closer than semiclassical gravity to quantum gravity in that the correlation

in quantum field and geometry fully present in quantum gravity is partially
retained in stochastic gravity, and the background geometry has a way to

sense the correlation of the quantum fields through the noise term in the

Einstein±Langevin equation, which shows up as metric fluctuations.

Thus `noise’ as used in this more precise language and context is not

something one can arbitrarily assign or relegate, but has taken on a wider

meaning in that it embodies the contributions of the higher correlation func-
tions in the quantum field. Only the lowest order is being displayed in what

has been done so far, in terms of the two-point function of the energy-

momentum tensor (or the four-point function of fields). Although the Feyn-

man±Vernon way can only accommodate Gaussian noise of the matter fields

and takes a simple form for linear coupling to the background spacetime,
the notion of noise can be made more general and precise. (For an example

of more complex noise associated with more involved backreactions arising

from strong or nonlocal coupling, see Johnson and Hu [33 ].) Progress is

made now on how to characterize the higher order correlation functions of

an interacting field systematically from the Schwinger±Dyson equations in
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terms of what Calzetta and I called `correlation noise’ [34, 35], after the

BBGKY hierarchy. This will be discussed in a later section.

Notice also that the difference between stochastic gravity and quantum
gravity is that in the former only the fluctuations and correlations of matter

fields are accounted for, while the full quantum theory should also include

the fluctuations and correlations of the quantum gravitational field. We will

focus on this difference and discuss how closely one could probe into the

full theory with stochastic equations later.

The aim of this paper is to deliberate on the meanings of this new
regime, the significance of quantum noise and metric fluctuations in affecting

Planck-scale processes, and how correlation bears to reveal a deeper level

of spacetime structure short of knowing the full theory of quantum gravity.

I will also describe some ongoing research in this program and make sugges-

tions for further investigations.

2. METRIC FLUCTUATIONS FROM BACKREACTION OF
QUANTUM FIELDS

By construction this new framework is suitable for investigation into
metric fluctuations and backreaction effects. So far it has been applied [25,

27, 29] to study quantum effects in cosmological spacetimes. Work on black

hole spacetimes has just begun [36±39]. Parallel to this is the interesting

application to noise-induced phase transitions by Calzetta and Verdaguer [40].

I will also mention other directions, including applications in thermal field
theories (hot flat space) [41 ].

2.1. Metric Fluctuations in Semiclassical Gravity

Metric fluctuation and its more colorful generalization called spacetime

foam have been a subject of intermittent speculations since Wheeler intro-

duced it in the early 196 0s to address `the issue of the final state’ in general

relativity [42 ]. We will have more to say about this generalization from the
viewpoint of stochastic gravity later. Here it is sufficient to point out that

the correlation functions for the noise kernels obtained by Calzetta and Hu

[18], Hu and Matacz [26], Hu and Sinha [25 ], and Campos, Martin, and

Verdaguer [27, 23 ] (see last section) give the first quantitative description of

metric fluctuations as induced by quantum fields. To begin, it is perhaps

useful to emphasize the difference in the meaning of `metric fluctuations’
used in our program, which includes backreaction from quantum fields, and

that used by many others in the test field context, where one considers

classical gravitational perturbations h m n from a fixed background geometry

and their two-point functions ^ h m n (x)h r s ( y) & (averaged with respect to some
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vacuum, in a semiclassical sense).4 It is useful as a measure of the fluctuations

in the gravitational field at particular regions of spacetime. Ford and coworkers

have explored this aspect in great detail [43 ] (They call this kind of fluctuation
`active’ and the kind we discuss here `passive’ Ð I would prefer to call them

`spontaneous’ and `induced’ .) However, when backreaction is included, as

is necessary at the Planck scale, with the background spacetime metric and

the quantum fields present evolving together consistently, the graviton two-

point function calculated with respect to a fixed background (as in the case

of `active’ fluctuations) rapidly loses its relevance.
In contrast, metric fluctuations hs

m n here [18, 25±27 ] are defined for

semiclassical gravity in the backreaction context. They are classical stochastic

quantities arising from the flucutations in the quantum fields present and are

important only at the Planck scale. We see that they are derived from the

noise kernel, which, if the quantum field is the graviton, involves graviton

four-point functions. It is this quantity which enters into the fluctuation-
dissipation relationÐ not the usual graviton two-point functionÐ which

encapsulates the semiclassical backreaction.

An immediate application of metric fluctuations is on the stability of

semiclassical spacetimes (solutions to the semiclassical Einstein equations)

against stochastic sources from particle creations, and the validity of semiclas-
sical gravity. The determining factor is in the noise kernel, which is related

to the fluctuations of the energy-momentum tensor. Kuo and Ford [44 ] calcu-

lated the fluctuations in the Casimir energy density for flat space and found

it to be comparable to the mean. Phillips and Hu [45 ] confirmed their result

using a covariant generalized zeta function method.

For quantum fields in a curved spacetime with an Euclidean section,
Phillips and Hu [45] derived a general expression for the stress-energy tensor

two-point function in terms of the effective action. The renormalized two-

point function is given in terms of the second variation of the Mellin transform

of the trace of the heat kernel for the quantum fields. For systems in which

a spectral decomposition of the wave operator is possible, one can derive an

exact expression for this two-point function. As a measure of the magnitude
of fluctuations dimensionless expression for the ratio between the variance

of each component of the stress-energy tensor compared to the mean is

used [44 ]:

D abcd (x) 5 Z ^ Tab(x)Tcd (x) & ren 2 ^ Tab(x) & ren ^ Tcd (x) & ren

^ Tab(x)Tcd(x) & ren Z (3 0)

4 The two-point functions of gravitons are not stochastic variables and so in a stricter sense
they should not be called metric `fluctuations. ’ To avoid confusion we may at times call our
quantities hs

m n induced metric fluctuations.
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From inspection, 0 # D abcd # 1. Only for D ¿ 1 can the fluctuations be

viewed as small. On the other hand, D , 1 indicates that the fluctuations

can be large compared to the mean value. Phillilps and Hu studied two
cases in detail with this method: d-dimensional flat space with one periodic

dimension (Rd 3 S1) with a minimally coupled massless scalar field and the

Einstein universe (S3) with a conformally coupled massless scalar field. The

results for the energy density are ( t denotes Euclildean time):

D t t t t (Rd 3 S1) 5
(d 1 1)(d 1 2)

(d 1 1)(d 1 2) 1 2
, D t t t t (S

3) 5
111

112
, .99 (31)

The large variance signifies the importance of quantum fluctuations and may

indicate the breakdown of semiclassical gravity at sub-Planckian scales.

2.2. Black Hole Fluctuations and Backreaction

Work in progress now focuses on fluctuations of the energy density of

quantum fields in early universe and black hole spacetimes. These results

will have direct bearing on structure formation from quantum fluctuations

in the early universe (see, e.g., ref. 46 and references therein) and stability
of black holes against Hawking radiation and the related entropy and informa-

tion loss issues. Here, as before, the central task is the computation of the

noise kernel, or the fluctuations of the energy-momentum tensor. One can

use the zeta function method (as in Phillips and Hu [45]) for treating the

second variation of the effective action, or more explicitly, the covariant point

splitting method [47 ]. The main difficulty for black hole spacetimes, as is
already present in the calculation of the regularized energy-momentum tensor

for spherically symmetric spacetimes [48 ], lies in the radial functions. For

optical metrics one can use the Gaussian approximation for the propagators

as was done by Page [49 ], who obtained an expression for the energy density

of quantum scalar fields which was shown to be good to an unexpectedly

high accuracy. Phillips [37 ] obtained results for the fluctuations of the energy
density of a scalar field in a general optical metric and is in progress for

the Schwarzschild metric at the horizon. Earlier, Ford [50] showed that

(spontaneous) black hole horizon fluctuationsÐ the graviton two-point func-

tionÐ are much smaller than Planck dimensions for black holes whose mass

exceeds the Planck mass. From our result and Ford’ s, one sees that, contrary
to some recent claims [51 ], the semiclassical derivation of Hawking radiance

should remain valid for black holes larger than the Planck mass and there is

no drastic effect near the horizon arising from metric fluctuations. Other

recent work on black hole horizon (spontaneous) fluctuations includes Sorkin

[52] and BarrabeÁ s et al. [53].
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The cosmological backreaction problem saw two stages of development

as represented by the use of the in-out cum in-in effective action (e.g., ref.

3) followed by the influence action (e.g., ref. 25) for extracting first the
mean value and then the fluctuations of the energy-momentum tensor, which

physically corresponds to the study of dissipation and fluctuations of the

spacetime. Likewise, the black hole backreaction problem also progressed

in two stages. The first stage started in the early 198 0s with the work of

Candelas, Howard, Page, Frolov, Jensen, McLaughlin, Ottiwell, Hiscock,

Anderson, and others (see ref. 48 and references therein) in the calculation
of the regularized energy-momentum tensor for quantum fields in black hole

spacetimes. The second stage has just begun. It focuses on calculating the

fluctuations of the energy-momentum tensor as described above, and with it

the backreaction on the black hole spacetime configurations and dynamics.

Ref. 39 gives a loose sketch of our program of investigation. We discussed

the formulation of the problem, commenting on possible advantages and
shortcomings of existing works, and introduced our own approach via stochas-

tic semiclassical gravity. The goal is to derive and solve the Einstein±Langevin

equation (or its physical equivalent, the fluctuation-dissipation relation) for

a self-consistent description of metric fluctuations and the dissipative dynam-

ics of a black hole with backreaction from its radiance. We divided the
problem into two main classes, the quasistatic problem and the dynamic

problem. The quasistatic problem is characterized by a black hole in quasie-

quilibrium with its Hawking radiation (enclosed in a box to ensure relative

stability). One important early work on backreaction of this kind is by York

[55], while the most thorough work to date is Anderson et al. [48 ]. Backreac-

tion for dynamical (collapsing) black holes is much more difficult to treat
than static ones, and there are fewer viable attempts. For situations with black

hole masses much greater than the Planck mass, one important early work

which captures the overall features of dynamical backreaction is that by

Bardeen [56 ] and its further elaboration by Massar [57]. (See ref. 39 for

more details.)

2.3. Fluctuation-Dissipation Relation for Black Holes

Candelas and Sciama [58 ] were the first to suggest that the black hole

radiance problem can be understood as a quantum dissipative system. For a

static black hole in equilibrium with its Hawking radiation, Mottola [95 ]

used the formal equivalence to a thermal field problem to show that in the
Hartle±Hawking state a fluctuation-dissipation relation (FDR) exists between

the expectation values of the commutator and anticommutator of the energy-

momentum tensor of the scalar field, a form familiar in linear response theory

[14]. In Ref. 39 we showed how both of these proposals are flawed. We
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showed why for a bona fide backreaction study of thermal radiance on a

quasistatic black hole, one should consider ab initio states more general than

the Hartle±Hawking state. To obtain a causal fluctuation-dissipation relation
(FDR) one needs to use the in-in (or Schwinger±Keldysh) formalism applied

to a class of quasistatic metrics (generalization of York [55 ]) and calculate

the fluctuations of the energy-momentum tensor for the noise kernel. So far

we have completed such a calculation [41 ] only for thermal fields in a weak

gravitational field which depicts the far-field limit of a Schwarzschild black

hole spacetime [60]. For the noise kernel of quantum fields near a Schwarz-
schild horizon Phillips [37 ] obtained a finite expression using the Gaussian

approximation for the Green function. The accuracy of this approximation

worsens near the horizon and a more reliable calculation would require the

inclusion of higher order terms in the Schwinger±DeWitt expansion (the a1,

a2 coefficients). In the following I outline the recent result of Campos and

Hu [41 ] for thermal fields in a weak gravitational background, which can be
viewed as the far-field limit of black hole spacetimes.

2.4. Thermal Fields in Black Hole Spacetimes

The behavior of a relativistic quantum field at finite temperature in a

weak gravitational field has been studied before by a number of groups
[61±63 ] for scalar and Abelian gauge fields. In these works the thermal

graviton polarization tensor and the effective action have been calculated and

applied to the study of the stability of hot flat and curved spaces and the

ª dynamicsº of cosmological perturbations. To describe screening effects and

stability of thermal (linearized) quantum gravity, one needs only the real part

of the polarization tensor, but for damping effects, the imaginary part is
essential. The gravitational polarization tensor obtained from the thermal

graviton self-energy represents only a part (the thermal correction to the

vacuum polarization) of the finite-temperature quantum stress tensor. There

are in general also contributions from particle creation (from vacuum fluctua-

tions at zero and finite temperatures). These processes engender dissipation

in the dynamics of the gravitational field and their fluctuations appear as
noise in the thermal field. We have found such a relation between these two

processes, which embodies the backreaction self-consistently.

Our calculation of the quantum corrections of the scalar field to the

thermal graviton polarization tensor was carried out by means of the Feyn-

man±Vernon [8] influence functional (IF). It yields results identical to that

obtained before by means of linear response theory (LRT) [62, 63]. From
the IF one can obtain the noise and dissipation kernels explicitly which satisfy

a fluctuation-dissipation relation (FDR) [13 ] at all temperatures.

We consider a free massless scalar field F arbitrarily coupled to a

gravitational field g m n with classical action (3). In the weak-field limit we
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consider a small perturbation h m n from flat spacetime h m n in the form

g m n (x) 5 h m n 1 h m n (x) with signature ( 2 , 1 , ? ? ? , 1 ) for the Minkowski

metric. The CTP effective action at finite temperature T 5 1/ b for a free
quantum scalar field in this gravitational background is given by

G b
CTP [h 6

m n ] 5 Sdiv
g [h 1

m n ] 2 Sdiv
g [h 2

m n ] 2
i

2
Tr{ln GÅ b

ab [h 6
m n ]} (32)

where a, b 5 6 denote the forward and backward time paths respectively,

and GÅ b
ab [h 6

m n ] is the complete 2 3 2 matrix propagator with thermal boundary

conditions for the differential operator N 1 V (1) 1 V (2) 1 ? ? ? , where V (n)

contain terms of nth order in h m n from the expansion of the scalar curvature

in Sf. Here Sdiv
g is the (divergent) gravitational action

Sdiv
g [g m n ] 5

1

l2P # d nx ! 2 gR(x)

1
l m Å n 2 4

4(n 2 4) # d nx ! 2 g F 3R m n r s (x)R m n r s (x)

2 1 1 2 36 0 1 j 2
1

6 2
2

2 R(x)R(x) G (33)

The first term is the classical Einstein±Hilbert action and the second (diver-

gent) term in four dimensions is the counterterm introduced to renormalize

the effective action. As before, l2P 5 16 p G, l 5 (288 0p 2)
2 1, and m Å is an

arbitrary mass scale. (It is noteworthy that the counterterms are independent
of the temperature because the thermal contribution to the effective action

does not contain additional divergences.)

We skip the details [41 ] and quote the results. The noise and dissipation

kernels are expressed in terms of the propagators GÄ b
6 7 (here tilde indicates

the Fourier transform and the 1 / 2 signs indicate the time branches in CTP),

respectively, as

NÄ m n , r s (k) 5 2
1

4 # d 4q

(2 p )4 [GÄ b
2 1 (k 1 q)GÄ b

1 2 (q)

1 GÄ b
1 2 (k 1 q)GÄ b

2 1 (q) ]T m n , r s (q, k) (34)

DÄ m n , r s (k) 5
i

4 # d 4q

(2 p )4 [GÄ b
2 1 (k 1 q)GÄ b

1 2 (q)

2 GÄ b
1 2 (k 1 q)GÄ b

2 1 (q) ]T m n , r s (q, k) (35)
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It is easy to show that they are related by the thermal identity

NÄ m n , r s (k) 5 i coth 1 b ko

2 2 DÄ m n , r s (k) (36)

In coordinate space we have the analogous expression

N m n , r s (x) 5 # d 4x8 KFD(x 2 x8) D m n , r s (x8) (37)

where the fluctuation-dissipation kernel KFD(x 2 x8) is given by the integral

KFD(x 2 x8) 5 i # d 4k

(2 p )4 eik ? (x 2 x8) coth 1 b ko

2 2 (38)

Defining the variance of the energy-momentum tensor of the thermal field

tÃm n
b (x) [ TÃm n (x) 2 ^ TÃm n (x) & b IÃ, one can show that

^ {tÃm n
b (x), tÃr s

b (x8)} & b 5 8N m n , r s (x 2 x8) (39)

^ [tÃm n
b (x), tÃr s

b (x8) ]& b 5 8iD m n , r s (x 2 x8) (4 0)

From the CTP effective action one can also derive an Einstein±Langevin

equation governing the evolution of the gravitational field under the dynamical

influence of the thermal field, with a stochastic source term whose autocorrela-

tion is given by the noise kernel. This is not so easily obtainable by the

conventional methods such as LRT in thermal field theory.

3. SEMICLASSICAL GRAVITY AS MESOSCOPIC PHYSICS

In the above I have sketched some current activities in stochastic gravity.

As we have seen, the main issue in the stochastic regime is that of noise and

fluctuations. Let us now explore its implications. In particular, what can we

say about quantum gravity now that this new theory is supposedly one step

closer to it than semiclassical gravity? In order to answer this question,

we need to examine where the stochastic situation is placed between the

semiclassical and quantum situations insofar as the main physical issues are

concerned. We also need to discuss some philosophical issues related to how

we view the structure and origin of spacetime and reexamine the meaning
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of quantizing gravity. For these we need first to ponder the relation between

quantum and classical as well as micro- and macrophysics.

On this issue I have proposed to view the low-energy theory (classical
GR) as the hydrodynamic collective state of the substructures of spacetime.

Only these basic constituents (most likely fermions), and not the collective

variables, obey quantum mechanical rules. (One can quantize these variables,

but they describe excitations of the collective modes such as phonons, plas-

mons etc., not the underlying basic consistituents such as atoms or electrons.)

In this view, quantum gravity does not refer to a quantization of metric or
connections (which describe the collective modes), but to the more basic, as

yet unknown (strings?) constituents. To see the effects of this deeper structure

with its coherence properties from the stochastic regime we suggest to rely

on topological signatures, effective field theory, and the correlation hierarchy

and its dynamics. We shall put aside topological considerations and only

address in the next three sections three groups of issuesÐ stochasticity, collec-
tivity, and correlationsÐ following the themes ª semiclassical gravity as mes-

oscopic physicsº [64 ], ª general relativity as geometro-hydrodynamicsº [65,

66 ], and ª quantum microdynamics via correlation hierarchyº [21, 34, 35 ]. I

will spend less space on stochasticity even though it is the central theme of

this new regime of interest, because it has been discussed extensively in
recent articles [18, 25±27, 67 ]. Rather I will expand on the other two issues

and indicate productive avenues for further investigation.

In an essay written in 1994 [64 ] I proposed to examine some important

issues in semiclassical gravity in the light of mesoscopic physics, issues

such as the transition from quantum to classical spacetime via decoherence,

crossover behavior at the Planck scale, tunneling and particle creation, growth
of density contrast from vacuum fluctuations, or finite-size effect in curved

spacetime phase transitions, and indicate some basic concerns of mesoscopic

physics for condensed matter, atoms or nuclei, in the quantum/classical and

the micro/macro interfaces, or the discrete/continuum and the stochastic/

deterministic transitions. I pointed out that underlying these issues are three

main factors: quantum coherence, fluctuations, and correlation. I discussed
how a deeper understanding of these aspects of fields and spacetimes can

help us address some basic problems, such as Planck-scale metric fluctuations,

cosmological phase transition and structure formation, and the black hole

entropy, end-state, and information paradox.

Mesoscopic physics deals with problems where the characteristic interac-

tion scales or sample sizes are intermediate between the microscopic and the
macroscopic. For experts they refer to a specific set of problems in condensed

matter and atomic/optical physics (see, e.g., refs. 68). For the present discus-

sion, I will adopt a more general definition, with `meso’ referring to the

interface between macro and micro on the one hand and the interface between
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classical and quantum on the other.5 These two aspects will often bring in

the continuum/discrete and the deterministic/stochastic factors. I showed how

issues concerning the micro/macro interface and the quantum to classical
transition arise in quantum cosmology and semiclassical gravity in a way

categorically similar to the new problems arising from condensed matter and

atomic/optical physics (and, at a higher energy level, particle/nuclear physics,

at the quark-gluon and nucleon interface). Many issues are related to the

coherence and correlation properties of quantum systems, and involve stochas-

tic notions, such as noise, fluctuations, dissipation, and diffusion in the treat-
ment of transport, scattering, and propagation processes. The advantage of

making such a comparison between these two apparently disjoint disciplines

is twofold: The theory of mesoscopic processes, which can be tested in

laboratories with the newly developed nanotechnology, can enrich our under-

standing of the basic issues common to these disciplines while being extended

to the realm of general relativity and quantum gravity. The formal techniques
developed and applied to problems in quantum field theory and spacetime

geometry can be adopted to treat condensed matter and atomic/optical systems

with more rigor, accuracy, and completeness. Many conceptual and technical

challenges are posed by mescoscopic processes in both areas.

3.1. Mesoscopic PhysicsÐ Fundamental Issues at the Quantum/
Classical and Micro/Macro Interfaces

Viewed in a more theoretical light, we can discern three aspects which

underlie all mesoscopic processes in gravitation and in condensed matter

physics. They are quantum coherence, fluctuations, and correlations. They
are manifest in the quantum/classical and the micro/macro interfaces.

5 Another meaning of mesoscopic can be defined with respect to structures and interactions.
Instead of dwelling on these individual processes in their specific context, one can refer to
the general category of problems which exist between two distinct levels of matter structure
or interaction scales, such as between the molecular and atomic scales, the QED lepton and
hadron scales, the nucleon and particle (quarkÐ gluon) scales, the QCD and GUT (grand
unification theory) scales (with or without deserts in between), and, of course, from the GUT
to the QG (quantum gravity) scale, which is depicted by semiclassical gravity. The distinct
levels of interaction are not arbitrarily picked; they obey theories of a `fundamental’ (QED,
QCD) or derived (atomic, nuclear interaction) natureÐ even what we today view as fundamen-
tal interactions may just be collective states of a deeper structure. The mesoscales between
them have common traits. They usually fall in the range where the approximations taken from
either level (e.g., low-energy QCD versus perturbative hadron physics) fail, and new structure
depicted by new collective variables and new language is called for. The new problems
encountered in condensed matter and nuclear/particle physics fall under such a conceptual
category, as do the problems of extending semiclassical gravity toward quantum gravity or
projecting quantum gravity (e.g., superstring theory) onto low-energy particle physics (the
standard model).
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3.1.1. Fluctuations and Decoherence

Fluctuations and noise in the environment are responsible for decoher-

ence in the system, which is a necessary condition for the quantum-to-classical
transition [12, 11 ]. Classical description in terms of definite trajectories in

phase space requires correlations between conjugate variables. Noise and

fluctuations destroy this correlation. The observed classical reality as an

emergent phenomenon from the quantum description has intrinsic stochastic

behavior [15, 10].

3.1.2. Coherence and Dissipation

This is the counterpart to the above, as fluctuations and dissipation are

balanced by the fluctuation-dissipation relation. The degree of coherence here

refers to the phase information in a quantum system which can be corrupted

by its interaction with an environment, resulting in a stochastic classical
dynamics for the system. Coherence in quantum systems is altered by dissipa-

tive effects, as occurs in macroscopic quantum phenomena [69 ], e.g., in

tunneling with dissipation at finite temperature.

3.1.3. Correlation and Collectivity

A useful signifier of the statistical properties of a system is its correlation

functionsÐ the BBGKY hierarchy in classical physics, or the Schwinger±

Dyson equations in quantum field theory. It can be used to measure the degree

of coherence in either the classical (correlation of the wave functions in

space and time) or the quantum senses (phase information). An example of

collectivity is the hydrodynamic variables versus the micro-variables: the
transition from kinetic theory to hydrodynamics is well known. The formal

treatment refers to deriving the Naviers±Stoke equation from the BBKGY

hierarchy. Here lies the relation of correlation and collectivity which is mani-

fest in the micro-to-macro transition. Combined with the consideration of

noise and decoherence above, we can see that the quantum/classical and the
micro/macro transitions are interrelated issues.

3.2. Effective Theories: Renormalizability, Stochasticity, and
Collectivity

The same factors arise in effective theories, which are theories valid at

a lower energy or a larger scale, but constructed or derived from more
fundamental theories for the more basic constituents. An example is the

Fermi four-point interaction as a low-energy limit of the Weinberg±Salam

electroweak interaction. Important issues are as follows: (1) Is the low-energy

effective theory renormalizable, or effectively renormalizableÐ deeper under-
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standing of effective theories has changed our view on renormalizability (see,

e.g., ref. 70). (2) How do the effects of the high-energy sector or processes

at a shorter length scale show up, if at all, at a larger scale in the low-energy
observation range? (3) Usually the low-energy physics is described by a

different set of variables from the high-energy physicsÐ what we call the

collective variables. How do we construct the collective state from the micro-

physics? An even harder question: If we only know about the dynamics of

the collective state, how much information about the deeper structure can

we infer? (4) The interphase between high- and low-energy sectors can
involve a crossover or a phase transitionÐ what determines its character? In

particular, fluctuations carry important information about the interphase and

if it persists even in a miniscule amount, can provide valuable information

about the short-scale behavior. In selected conditions such as in inflationary

universe (like a `zoom lense’ [71 ]) or black holes (like a `microscope’ [72 ])

it offers hope to probe into sub-Planckian physics through structure formation
[46] or Hawking radiation processes [73].

The above issues were phrased in a way which is particularly relevant

to the search for a viable theory of quantum gravity from low-energy phys-

icsÐ by this we mean a quantum theory for the substructure of spacetime,

not the quantization of general relativity. On the issue of stochasticity, Calzetta
and Hu [67] studied an effective field theory and came up with a better

understanding of the threshold behavior. We explored how the existence of

a field with a heavy mass influences the low-energy dynamics of a quantum

field with a light mass by expounding the stochastic characteristics of their

interactions which take on the form of fluctuations in the number of (heavy

field) particles created at the threshold, and dissipation in the dynamics of
the light fields, arising from the backreaction of produced heavy particles.

We claim that the stochastic nature of effective field theories is intrinsic, in that

dissipation and fluctuations are present both above and below the threshold.

Stochasticity builds up exponentially quickly as the heavy threshold is

approached from below, becoming dominant once the threshold is crossed.

But it also exists below the threshold and is in principle detectable, albeit
strongly suppressed at low energies. The results derived here can be used to

give a quantitative definition of the `effectiveness’ of a theory in terms of

the relative weight of the deterministic versus the stochastic behavior at

different energy scales.

In addition to stochasticity, one needs also to pay attention to two sets

of issues: (a) How collective variables can be assigned for low-energy
physics [74 ]. For gravity, if we assume that the metric or connection are

the collective variables, how are they derivable from a deeper structure

(e.g., strings) without our knowing the details of their interactions (e.g.,

string field theory)? (b) Viewing general relativity as the hydrodynamic
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limit of quantum gravity, examine the equivalent of the kinetic theory

regime [66 ]. Work on the decoherent history of hydrodynamic variables

[75 ] and on correlation history [21, 34 ] will be useful for pursuing these
ideas. I will expand on the collectivity aspects in the next two sections

before turning to the correlation aspect.6

4. GENERAL RELATIVITY AS
GEOMETROHYDRODYNAMICS

In an essay written in 1996 [66] for the Second International Sakharov

Conference, in the spirit of Sakharov’ s `metric elasticity’ idea [65 ], I presented

the viewpoint that general relativity is hydrodynamics. It describes the collec-

tive state (call it `spacetons’ ?) of a system of strongly interacting quantum

objects (strings?) which span the spacetime substructure.
I examined the various conditions which underlie the transition from

some candidate theory of quantum gravity to general relativity, specifically,

the long-wavelength, low-energy (infrared) limits, the quantum-to-classical

transition, the discrete-to-continuum limit, and the emergence of a macro-

scopic collective state from the microscopic consitituents and interactions of
spacetime and fields. In the `top-down’ approach, I argued that nonequilibrium

quantum field theory is needed to show how general relativity arises as

various limits are taken in all candidate theories of quantum gravity, such as

string theory, quantum geometry (via the Ashtekar spin connections or the

Rovelli±Smolin loop representations), and simplicial quantum gravity. In the

`bottom-up’ approach, which is the path have taken here, one starts with the
semiclassical theory of gravity and examines how it is modified by graviton

and quantum field excitations near and above the Planck scale. I mentioned

three aspects based on recent findings of our work: (1) Emergence of stochastic

behavior of spacetime and matter fields depicted by an Einstein±Langevin

equation. The backreaction of quantum fields on the classical background

spacetime manifests as a fluctuation-dissipation relation (discussed above). (2)
Manifestation of stochastic behavior in effective theories below the threshold

arising from excitations above. The implication for general relativity is that

such Planckian effects, though exponentially suppressed, is in principle detect-

able at sub-Planckian energies [67 ]. (3) Decoherence of correlation histories

and quantum-to-classical transition [21]. Following the observation of Gell-

Mann and Hartle that the hydrodynamic variables which obey conservation
laws are most readily decohered, one can [66 ], in the spirit of Wheeler [e.g.,

6 The next two sections are excerpted from (the unpublished part of) an article [66 ]. Readers
prone to be bored or annoyed by philosophical discourses should proceed to Section 6.
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ref. 76 ] view the conserved Bianchi identity obeyed by the Einstein tensor

as an indication that general relativity is a geometrohydrodynamic theory.

4.1. `Top-Down’ : How to Reach the Correct Limits

The possible transitions we expect to find between quantum gravity

and general relativity, i.e., quantum-to-classical transition, low-energy, long-

wavelength (infrared) limits, discrete-to-continuum limit, extended structure
to point structure, and micro/constituents versus macro/collective states,

are manifest in varying degrees of transparency in three leading types of

candidate theories of quantum gravity: the superstring theory [77 ] the loop

representation of quantum geometry via spin connections [78 ], and simpli-

cial quantum gravity [86 ]. In string theory, a spin-two particle is contained

in the string excitations, and it is easy to see the limit taken from an extended
structure to a point. The larger problem of how the target space (e.g.,

spacetime of 26 dimensions for bosonic string) can be deduced from, or at

least treated on the same footing as, the world volume of fundamental

branes, still remains elusive. The Bekenstein±Hawking expression for the

black hole entropy [80] originally derived in semiclassical gravity is

obtained as the tree-level result of many quantum theories of gravity [81 ].7

But in the construction of a statistical mechanical entropy [83 ] from quantum

field theory in curved spacetime, it is not so clear which of the many internal

degrees of freedom of string excitations contribute to the leading quantum

correction term. It is encouraging that recent advances in D-brane technology

and duality relations have provided a statistical mechanical origin of black

hole entropy from string theory, albeit so far only for near-extremal black
holes [84 ]. This linkage with low-energy physics (semiclassical gravity

results) will illuminate how the collective variables are chosen and the

collective state formed. In the quantum relativity approach using Ashtekar ’ s

spin connection and the Rovelli±Smolin loop representation, the picture of

a one-dimensional quantum weave behaving like a polymer is evoked [85 ].
When viewed at a larger scale the weaves appear to `knit’ a higher dimen-

sional spacetime structure. This is an interesting picture, but how this

collective process comes aboutÐ i.e., how the physical spacetime becomes

a dynamically preferred entity and an infrared stable structureÐ remains to

be explicated (cf. protein folding?). In simplicial quantum gravity [86 ], the

classical limit might be obtained more easily in some versions (e.g., in the
Ponsano ±Regge 6j calculus [87 ], it is quite similar to the treatment of

7 Jacobson [82 ] used the thermodynamic expression for black hole entropy to show how
Einstein’ s equation can be derived as a thermodynamic equation of state. The underlying
philosophy of this view is similar to ours.
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ordinary spin systems via group-theoretic means, in place of the more

involved considerations of environment-induced decoherence [11 ]), but

essential properties like diffeomorphism invariance in the continuum limit

are not guaranteed, such as in Regge calculus. The dynamical triangulation

procedure (see refs. 88 for recent reviews) was believed to work nicely in

these respects. But there are speculations that a first-order transition may

arise which can destroy the long-wavelength niceties. How the general

relativity limit comes about is not yet fully understood.

Many structural aspects of these theories in their asymptotic regimes

(defined by the above-mentioned limits) near the Planck scale bear sufficient

resemblance to the physics in the atomic and nuclear scales that I think it is

useful to examine the underlying issues in the light of these better-understood

and well-tested theories. These include on the one hand theories of `fundamen-

tal’ interactions and constituents, such as quantum electrodynamics (QED)

and quantum chromodynamics (QCD)Ð add to them the well-developed yet

untested theories of supersymmetry (SUSY) and grand unified theories

(GUT)Ð which are indeed what piloted many of today’ s candidate theories

of quantum gravity, and on the other hand theories about how these interac-

tions and constituents manifest in a collective settingÐ theories traditionally

discussed in condensed matter physics using methods of statistical mechanics

and many-body theories. These two aspects are not disjoint, but are interlinked

in any realistic description of nature [89, 74 ]. They should be addressed

together in the search for a new theory describing matter and spacetime at

a deeper level. The collective state description has not been emphasized as

much as the fundamental interaction description. I call attention to its rele-

vance because especially in this stage of development of candidate theories

of quantum gravity, deducing their behavior and testing their consequences

at low-energy constitute an important discriminant of their viability. Low-

energy particle spectrum and black hole entropy are prime examples among

the currently pursued topics.

Take, for example, the interesting observations related above, that four-

dimensional spacetime is an apparent (as observed at low energy) rather than

a `real’ (at Planck energy scale) entityÐ highlighted in Susskind’ s [90] world

as hologram and ’ t Hooft’ s [91] view of the string-theoretic basis of black

hole dynamics and thermodynamics. General relativity could be an emergent

theory in some `macroscopic,’ averaged sense at the low-energy, long-wave-

length limit. The fact that fundamental constituents manifest very different

features at lower energies is not so surprising; they are encountered in almost

all levels of structureÐ molecules from atoms, nuclei from quarksÐ referred

to categorically as `collective states.’ How relevant and useful these variables

or states are depends critically on the scale and nature of the physics one
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wants to probe. One cannot say that one is better than the other without

stipulating the range of energy in question, the nature of the probe, and the

precision of the measurement. Just as thermodynamic variables are powerful

and economical in the description of long-wavelength processes, they are

completely useless at molecular scales. Even in molecular kinetic theory,

different variables (distribution and correlation functions) are needed for

different ranges of interactions. In treating the relation of quantum gravity

to general relativity it is useful to bear in mind these general features we

learned from more familiar processes.

Even when one is given the correct theory of the constituents, it is not

always an easy task to construct the appropriate collective variables for the

description of the relevant physics at a stipulated scale. Not only are the

derived structures different from their constituents, their effective interactions

can also be of a different nature. There used to be a belief (myth) that once

one has the fundamental theory, it is only a matter of details to work out an

effective theory for its lower energy counterparts. Notice how nontrivial it

is to deduce the nuclear force from quark±gluon interactions, despite our

firm knowledge that QCD is the progenitor theory of nucleons and nuclear

forces. Also, no one has been clever enough to have derived, say, elasticity

from QED yet. Even if it is possible to introduce the approximations to derive

it, we know it is plain foolish to carry out such a calculation, because at

sufficiently low energy, one can comfortably use the stress and strain variables

for the description of elasticity. (Little wonder quantum mechanics, let alone

QED, is not a required course in mechanical engineering.)

4.2. `Bottom-Up’: Tell-Tale Signs from Low Energy

How the low-energy behavior of a theory is related to its high-energy

behavior (issues of effective decoupling and renormalizability naturally would

arise [92 ]), and whether one can decipher traces of its high-energy interactions

or remnants of its high-energy components, have been the central task of

physics since the discovery of atoms in the last century and subatomic particles

in this century to today’ s probe on unified theories at ultrahigh energy. The

symmetry of the particles and interactions existing at low energies are the

only raw data we can rely on to construct (and appraise the degree of

success of) a new unified theory. (Such is the central mission of, e.g., string

phenomenology in reproducing the low-energy particle spectrum.) Some

salient features of general relativity such as diffeomorphism invariance, Min-

kowski spacetime as a stable ground state, etc., are necessary conditions for
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any quantum theory of gravity to meet at the low-energy limit.8 Approaching

Planck energy from below, the beautifully simple yet deep theory of black

hole thermodynamics [80] first discovered in semiclassical gravity is serving
as a guide and providing a checkpoint for viable quantum gravity theories.

Concerning the nature of the legacy (actually, the `leftovers’ ) from the physics

at high energy, or special tell-tale signs at low energy, I would suggest paying

careful attention to two features: topology and stochasticity. Topology refers

to both nontrivial spactimes and field configurations, while stochasticity refers

to the coarse-grained remnants of microphysics and fluctuation effects at the
crossover. Here I will only focus on the latter feature, which is the central

theme of stochastic gravity.

4.2.1. Fluctuations and Noise at the Threshold

An important feature of physics at the Planck scale depicted by semiclas-

sical gravity is the backreaction of quantum effects of particles and fields, such

as vacuum polarization and particle creation, on the classical gravitational

spacetime. This is an essential step beyond classical relativity for the linkage
with quantum gravity. For example, generalization to the R 1 R2 theory of

gravity is a necessary product from the renormalization considerations of

quantum field theory in curved spacetimes. It should also be the low-energy

form of string theory (plus dilaton and antisymmetric fields). Backreaction

demands more, in that the quantum matter field is solved consistently with the
classical gravitational field [2]. The consistency requirement in a backreaction

calculation brings in two new aspects:

1. The classical gravitational field obeys a dynamics which contains a

dissipation component arising from the backreaction of particle creation in

the quantum field. The dissipation effect is in general nonlocal, as it is

influenced by particle creation not only occurring at one moment, but also
integrated over the entire history of this process [93, 3 ].

2. Creation of particles in the quantum matter field at the Planck energy

(which is responsible for the dissipative dynamics of the gravitational field)

can be depicted as a source which has both a deterministic and a stochastic

component. The first part is the averaged energy density of created particles,

which is known in previous treatments. The second part measures the differ-

8 Note that if we view general relativity as a hydrodynamic theory in the same sense as the
nuclear rotational and vibrational states in the collective or liquid drop model, we can see
that as much as the symmetries of rotational and vibrational motion provide a useful description
of the large-scale motion of a nucleus, they have no place in the fundamental symmetries of
nucleons, much less their constituents, the quarks and gluons. In this sense one could also
question the necessity and legitimacy of basic laws like Lorentz invariance and diffeomorphism
invariance at a more fundamental level. It should not surprise us if they no longer hold for
trans-Planckian physics.
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ence of the amount of particles created in two neighboring histories and is

depicted by a nonlocal kernel, the correlator of colored noise [18, 17]. The

dissipation and noise kernels are related by a fluctuation-disspation relation.
As described above, the backreaction equation is in the form of a Langevin

equation, which we call the Einstein±Langevin equation [26, 25 ].

The Einstein±Langevin equation constitutes a new frontier for us to

explore possible phase transition and vacuum instability issues, which I

believe many of the `top-down’ approaches would also encounter in this

crossover regime.

4.2.2. Stochastic Behavior Below the Threshold

What are the tell-tale signs for a low-energy observer of the existence
of a high-energy sector in the context of an effective field theory? It helps

to adopt an open system viewpoint to consider effective theories and explore

their statistical mechanical properties. The question is to compare the differ-

ence between a theory operative (i.e., giving an adequate description) at

low energies (as an open system, with the high-energy sector acting as the
environment) to an exact low-energy theory taken as a closed system. We

know that there are subtle differences between the two, arising from the

backreaction of the heavy on the light sector. Though not obvious, the stochas-

tic behavior associated with particle creation above the threshold (which for

gravitational processes is the Planck energy) is related to the dissipative

behavior of the background spacetime dynamics. (This has been known for
some time; see, e.g., ref. 5.) Schwinger ’ s result [94] for pair production in

a strong electromagnetic field is a well-known example. This effect at very

low energy has been ignored, however, as it is usually regarded as background

noise covered by very soft photons. That such a noise carries information

about the field at high energy was only pointed out recently [67 ]. Using a

simple interacting field model, Calzetta and I found that even at energy way
below the threshold, stochastic effects, albeit at extremely small amplitudes,

can reveal some general (certainly not the specific) properties of the high-

energy sector. Finally one can also show from the decoherence aspects of

quantum theories in reaching their classical limits [66] why general relativity

can be viewed as the hydrodynamic limit of quantum gravity.

5. LOW-ENERGY COLLECTIVE-STATE PHYSICS AND
BEYOND

Suppose one takes this viewpoint seriously, what are the possible implica-

tions? One can make a few general observations here.
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5.1. Quantizing Metric May Yield Only Phonon Physics

First, the laws governing these collective variables are classical, macro-
scopic laws. It may not make full sense to assume that by quantizing these

variables directly one would get the micro-quantum basis of the macro-classical

theory, as has been the dominant view in quantum gravity. Just as the energy

density r and momentum densities p in the Einstein equation are the hydrody-

namic variables of a matter field, quantization should only be performed on

the microscopic fields F (x) from which they are constructed. If one did so for
the metric or the connection variables, one would get the quantum excitations

of geometry in the nature of phonons in relation to atoms (or other quantum

collective excitations in condensed matter physics). That may be the next order

of probe for us, and may reveal some interesting phenomena, but it is still very

remote from seeing the nucleon structure in the solid lattice or the attributes

of quantum electrodynamics. In the analogy mentioned above, we do not expect
quantum elasticity to tell us much about QED.

SecondÐ and this is perhaps the more interesting aspectÐ assuming that

the metric and connections are the collective variables, from the way they

are constructed, what can one say about their microscopic, quantum basis?

Historically this question was asked repeatedly when one probed from low- to
high-energy scales, trying to decipher the microscopic constituents and laws of

interactions from macroscopic phenomena. This is like going from phonons to

the structure of atoms, from nuclear rotational spectrum to nucleon strucutureÐ
not an easy question to answer. But there are nevertheless ways to guide us,

e.g., in terms of some tell-tale signs. In the above analogies, recall that atomic

spectroscopy reveals many properties about the electron±electron and electron±
nucleus interactions, low-temperature anomalous behavior of specific heat

reveals the quantum properties of electrons, and the intermediate boson model

bridges the symmetry of the collective modes with that of the independent

nucleons. To address questions like these, one needs to proceed from both ends:

One needs to postulate a theory of the microscopic structure, and work out its

collective states at large scale and low energies. One also needs to consider
the consequences of the known low-energy theory, paying attention to subtle

inconsistencies or mistakenly ignored trace effects from higher energy processes.

Indeed, this is what is going on today, with string theory as the micro theory,

and semiclassical gravity and particle phenomenology as its low-energy limit.

The viewpoint I am proposing would suggest focusing on collective states

(solitons?) of excitations of the fundamental string on the one hand and a
detailed study of the possible new phenomena in quantum field theory in curved

spacetime on the other, such as fluctuations and phase transitions around the

Planck energy, quantum corrections to the black hole entropy, resonance states,

and spacetime foams.
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5.2. Common Features of Collective States Built from Different
Constituents

As mentioned above, there are two almost orthorgonal perspectives in

depicting the structure and properties of matter. One is by way of its constituents

and interactions, the other according to its collective behavior. The former is

the well-known and well-trodden path of discovery of QED, QCD, etc. If we

regard this chain of QED-QCD-GUT-QG as a vertical progression depicting

the hierarchy of basic constituents, there is also a horizontal progression in terms

of the stochastic-statistical-kinetic-thermodynamic/hydrodynamic depiction of

the collective states. It should not surprise us that there exist similarities between

matter in the same collective state (e.g., hydrodynamics) but made from different

constituents. Macroscopic behavior of electron plasmas is similar in many

respects to the quark±gluon plasma. Indeed, one talks about magnetohydrody-

namics from Maxwell’ s theory as well as magnetochromohydrodynamics from

QCD. In this long-wavelength, collision-dominated regime, they can both be

depicted by the hydrodynamics of fluid elements, which is governed simply

by Newtonian mechanics. The underlying micro-theories are different, but the

hydrodynamic states of these constituents are similar. Here I am proposing that

general relativity being a hydrodynamic limit (of some candidate theory of

quantum gravity) is an effective theory in the way that nuclear physics is with

regard to QCD, and atomic physics is with regard to QED. They are all low-

energy collective states of a more fundamental set of laws and can share some

similarities. The macroscopic, hydrodynamic equations and their conservation

laws like the Navier±Stokes and the continuity equations are all based on

dynamical and conservation laws of microphysics (e.g., Newtonian mechanics),

but when expressed in terms of the appropriate collective variables, they can

take on particularly simple and telling forms. Thermodynamic variables like

temperature, entropy, etc. (think black hole analogyÐ mass, surface area) are

derived quantities with their specific laws (three laws) traceable via the rules

of statistical mechanics (of Gibbs and Boltzmann) to the laws of quantum

mechanics. Rules of statistical mechancis are important when we probe a deeper

layer of structure from known low-energy theories such as semiclassical gravity:

we need to know how to disentangle the collective states in order to see how

the microphysics works.9 It is hard to imagine how a complete theory of

microphysics can be attained without going through this step.

9 Savor the importance of, say, coming up with a statistical mechanical definition of temperature
in a canonical ensemble as the rate of change of the accessible states of a system in contact
with a heat reservoir with respect to changes in energy, and we can appreciate the importance
of Gibbs’ work in relation to quantum physics.
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5.3. Hydrodynamic Fluctuations Applied to Black Holes and
Cosmology

A problem where this analogy with collective models may prove useful

is that of black hole entropy. If we view the classical expression for black

hole entropy to be a hydrodynamic limit and the corrections to it as arising
from hydrodynamic fluctuations, we could use linear response theory to

approach conditions near thermodynamic equilibrium and construct a non-

equilibrium theory of black hole thermodynamics.1 0 It also seems to me that

many current attempts to deduce the quantum corrections of black hole

entropy from the micro-quantum theory of strings could be missing one step.

This is like the correpondance between results predicted from the independent
particle (nucleon) model (where one can construct the shell structures) and

that from the liquid drop model (where one can construct the collective

motions)Ð a gap exists which cannot easily be filled by simple extensions

of either model operative in their respective domains of validity. This involves

going from the individual nucleon wavefunctions to the collective states of a

nucleus. It is likely that only specific appropriate combinations of fundamental
string excitation modes which survive in the long-wavelength limit can con-

tribute to the excitations of the collective variables (area and surface gravity

of black hole) which enter in the (semiclassical gravity) black hole entropy.11

Viewing classical GR as hydrodynami cs implies that stochastic gravity

and Einstein±Langevin equation would depict the hydrodynamic fluctuations
of spacetime dynamics as induced by quantum field processes at the Planck

scale. One could study the behavior of metric and field fluctuations with this

Langevin equation in a way similar to that of critical dynamics for fluids

and condensed matter.

In summary, note that the progress of physicsÐ the probing of the

structure and dynamics of matter and spacetimeÐ has always moved in the
direction from low to high energies. One needs to pay attention to the seem-

ingly obvious facts at low energies and probe any discrepancy or subtleties

not usually observed to find hints to the deeper structures. By examining

how certain common characteristics of all successful low-energy theories

(here, I only discuss the hydrodynamic and thermodynamic aspects) may

10 The black hole backreaction problem has been studied by many authors, notably York [55]
and Anderson et al. [48 ]. We are taking a nonequilibrium statistical field theory approach.
We aim to get the fluctuations of the energy-momentu m tensor of a quantum field in a
perturbed Schwarzschild spacetime [38 ], examine how they might induce dissipations of the
event horizon, and deduce a susceptibility function of the black hole. This would realize the
proposal of Sciama that a black hole in equilibrium with its Hawking radiation can be depicted
as a quantum dissipative system [58 ] (see also ref. 95).

11 This statement made in July 1996 should be viewed in the context of new developments
since then in the statistical mechanical origin of black hole entropy via D-branes [84 ].
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recur in a new theory at a higher energy, and how they differ, we can perhaps

learn to ask the right questions and focus on some hitherto neglected aspects.

6. QUANTUM MICRODYNAMICS VIA CORRELATION
HIERARCHY

In the last two sections we touched on two issues deemed important in
the transition between quantum and classical gravity, i.e., stochasticity (or

fluctuations) at the intermediate regime (stochastic semiclassical gravity) and

collectivity at the low-energy (general relativity) regime. We now focus on

the correlation aspect, as a way for probing the full quantum regime. Along

the way we will mention a few problems which may shed light on the passage

from stochastic to quantum gravity.

6.1. Correlation and Coherence

If we look back at the equations in Section 1.4 and compare the semiclas-

sical (sC), stochastic (St), and quantum (Q) regimes, we see first that in the

sC case, the classical metric correlations are given by the product of the

vacuum expectation value of the energy-momentum tensor, whereas in the
quantum case the quantum average of the correlation of metric (operators)

is given by the quantum average with respect to the fluctuations in both the

matter and the gravitational fields. In the stochastic case the form is closer

to the quantum case except that now the quantum average is replaced by the

noise average, and the average of the energy-momentum tensor is taken

with respect only to the matter field. The important improvement over the
semiclassical case is that it now carries information on the correlation of the

energy-momentum tensor of the fields and its induced metric fluctuations.

This is another way to see why the stochastic description is closer to the

quantum truth. More intuitively, the difference between quantum and semi-

classical conditions is that the latter loses all the coherence in the quantum

gravity sector. The stochastic improves on the semiclassical condition in that
partial information related to the coherence in the gravity sector is preserved

as reflected in the backreaction from the quantum fields and manifests as

induced metric fluctuations. That is why we need to treat the noise terms with

maximal respect. They contain quantum information absent in the classical

condition. The coherence in the geometry is related to the coherence in the

matter field, as the complete quantum description should be given by a
coherent wave function of the combined matter and gravity sectors. Since

the degree of coherence can be measured in terms of correlations, our strategy

is to examine the higher correlations of the matter field, starting with the

variance of the energy-momentum tensor in order to probe into or retrieve
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whatever partial coherence remains in the quantum gravity sector. The noise

we worked out in the Einstein±Langevin equation above contains the fourth-

order correlation of the quantum field (or gravitons when considered as matter
source) and manifests as induced metric fluctuations. Let us see what can

be done to get closer to the quantum picture.

If we view classical gravity as an effective theory, i.e., the metric or

connection functions as collective variables of some fundamental particles

which make up spacetime in the large and general relativity as the hydrody-

namic limit, we can also ask if there is a midway station like kinetic theory
from molecular dynamics, from quantum microdynamics to classical hydro-

dynamics. This transition involves both the micro-to-macro transition and

the quantum-to-classical transition, which is what constitutes the mesoscopic

regime for us.

For our present purpose we can represent quantum gravity as an inter-

acting quantum field (of fermions?) and we shall traverse this passage using
the correlation dynamics from the (nPI) master effective action. There are

two aspects in this problem: coherence of a field as measured by its correlation

(for quantum as well as classical), and quantum-to-classical transition. We

wish to treat both aspects with a quantum version of the correlation (BBGKY)

hierarchy, the Schwinger±Dyson equations. There are three steps involved:
First, show how to derive the kinetic equations from quantum field theory,

or to go from Dyson to Boltzmann [96 ]. Second, show how to introduce the

open system concept to the hierarchy. For this we need to introduce the

notion of `slaving’ in the hierarchy, which renders a subset made up of a

definite number of lower order correlation functions as an effectively open

system, where it interacts with the environment made up of the higher correla-
tion functions. Third, show why there should be a stochastic term in the

Boltzmann equation when contributions from the higher correlation functions

are included.

6.2. Kinetic Field Theory via Master Effective Action

The first step was taken in the 198 0’ s, when Calzetta and Hu [96 ],

among others [97] (see ref. 98 for earlier work and ref. 99 for recent develop-

ments) showed how the quantum Boltzmann equation arises as a description

of the dynamics of quasiparticles in the kinetic limit of quantum field theory.

The main element in the description of a nonequilibrium quantum field is

its Green functions, whose dynamics is given by the Dyson equations. For
the second step, we showed in 1995 [34 ] how the Schwinger±Dyson equations

can be obtained from an ` PI master effective action and how the coarse-

grained (truncation with slaving) n-point correlation functions behave like

an effectively open system. Recently [35 ] we have taken the third step in
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identifying such a noise term in the Boltzmann equation (its classical limit

reproduces the result of Kac and Logan [100]) and proving a fluctuation-

dissipation relation for these correlation noises. The resultant stochastic Boltz-
mann equation has features of both the Langevin and Boltzmann equations.

With this one can then begin to investigate the possibility of using the

correlation hierarchy to infer the quantum microdynamics. For illustration,

I will just show the lowest order in the correlation hierarchy by way of the

master effective action.

The mean-field and the two-point function which one uses to deduce
kinetic theory or critical dynamics results are just the lowest two elements

in the full Schwinger ±Dyson (SD) hierarchy of correlation functions. In

general the complete set is required to recover full (including phase) informa-

tion in a quantum field. If we now view the problem in this light, we can

see how dissipation and fluctuations arise when the hierarchy is truncated

and the higher correlations are slaved (I refer to these two procedures as
coarse-graining), in the same way as the Boltzmann equation is derived from

the BBGKY hierarchy. What is new in our current understanding is that

there should also be a noise term in addition to the collision term in the

Boltzmann equation.

In ref. 34 we showed how this hierarchy of SD equations can be derived
from the master ( ` PI ) effective action, so here I will just show the form of

the 2PI. For a scalar field F (x) with classical action S [F ] under an external

source J(x) the generating functional W [J ] is given by [101 ]

exp{iW [J ]} 5 # D F exp{iS [F ] 1 i # d 4x J(x) F (x)} (41)

from which one can obtain the expectation value or mean field

f (x) 5
d W

d J Z J 5 0

(42)

The effective action is the Legendre transform of W,

G [f ] 5 W [J ] 2 # d 4x J(x) f (x) (43)

from which we obtain the equation of motion

d G
d f

5 0 (44)

In a causal theory, we must adopt Schwinger ’ s CTP formalism. The

point x may therefore lie on either branch of the closed time path
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(a, b 5 6 ), or equivalently we may have two background fields

f a(x) 5 f (xa). The classical action is defined as

S [f a ] 5 S [F 1 ] 2 S [F 2 ]* (45)

which automatically accounts for all sign reversals. We also have two sources

# d 4x Ja(x) F a(x) 5 # d 4x [J1(x) F 1(x) 2 J2(x) F 2(x) ]

and obtain two equations of motion

d G
d f a 5 0 (46)

These equations always admit a solution where f 1 5 f 2 5 f is the physical

mean field. After this identification, they become a real and causal equation

of motion for f .

The functional methods we have used so far to derive the dynamics of

the mean field may be adapted to investigate more general operators. In order
to find the equations of motion for two-point functions, for example, we add

a nonlocal source Kab(x, x8) [1 02, 96 ]

exp{iW [Ja , Kab ]} 5 # D F a exp i H S [F a ] 1 # d 4x Ja F a

1
1

2 # d 4x d 4x8 Kab F a F b J (47)

It follows that

d W

d Kab(x, x8)
5

1

2
[f a(x) f b(x8) 1 Gab(x, x8) ]

Therefore the Legendre transform, the so-called 2PI effective action,

G [f a, Gab ] 5 W [Ja , Kab ] 2 # d 4x Ja f a

2
1

2 # d 4x d 4x8 Kab [f a f b 1 Gab ] (48)

generates the equations of motion

d G
d f a 5 2 Ja 2 Kab f b;

d G
d Gab 5 2

1

2
Kab (49)

This is an (n 5 2) example of the nPI effective action. When n ® ` ,
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this is known as the master effective action (MEA). The master effective

action is a functional of the whole string of Green functions of a field theory

whose variation generates the Schwinger ±Dyson hierarchy. In ref. 34 we (1)
gave a formal construction of the master effective action, (2) showed how

truncation in nPI is related to loop expansion, and (3) showed how `slaving’

leads to dissipation.

6.3. Theoretical Considerations: nPI, 1/N, and Loop Expansions

In the above we defined the master effective action and showed its

relation to the Schwinger±Dyson hierarchy. From this one can establish a

kinetic theory of nonlinear quantum fields, derive the kinetic equations [96 ],

and a correlation noise arising from the slaving of the higher correlation

functions. The stochastic Boltzmann equation [35 ] contains features which

would enable us to make connection with the stochastic equation in semiclassi-
cal gravity. This comes about from the following consideration: The Boltz-

mann equation describes the evolution of a one-particle distribution function

driven by a two-particle collision integral, and the stochastic Boltzmann

equation incorporates the contribution of a higher order correlation function.

The Langevin equation was derived in the framework of an open system, the
noise arising from coarse-graining the environment. Truncation and slaving as

carried out in the hierarchy yield an effectively open system and the master

effective action leads to the stochastic Boltzmann equation similar to the

Langevin equation in an open system. (From here we can see at work the

two major paradigms in nonequilibrium statistical mechanics: the Boltzmann±

BBGKY and the Langevin±Fokker ±Planck descriptions.) The corresponding
situation for interacting quantum fields can be applied to quantum gravityÐ
assuming that it can be represented by some interacting quantum fieldÐ and

illuminate how one should proceed from the standpoint of stochastic gravity.

We can get a handle on the correlation of the underlying field by examining

the hierarchy of equations, of which the Einstein±Langevin equation describes

only the lowest order correlations: the relation of the mean field to the two-
point function, and the two-point function to the four-point function (variance

in the energy-momentum tensor). One can in principle move higher in this

hierarchy to decipher the higher correlation contributions. Notice that we

have only dealt with the correlation aspect, the quantum-to-classical aspect

remains. This can be treated by the decoherence of correlation histories

discussed earlier [21 ].
While we are discussing formal matters, I should mention that it is

worthwhile to also include the large-N expansion for comparison. There exists

a relation between correlation order and the loop order [34 ]. One can also

relate it to the order in the large-N expansion. It has been shown that the
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leading-order 1/N expansion for an N-component quantum field yields the

equivalent of semiclassical gravity [103 ]. The leading-order 1/N approxima-

tion yields mean-field dynamics of the Vlasov type [104 ], which shows
Landau damping which is intrinsically different from the Boltzmann dissipa-

tion. In contrast, the equation obtained from the nPI (with slaving) contains

dissipation and fluctuations manifestly. It is apparent that the next to leading

order incorporates interactions corresponding to coherent scattering of parti-

cles. It would be of interest to think about the relation between semiclassical

and quantum conditions in the light of the higher 1/N expansions, which is
quite different from the scenario associated with the correlation hierarchy.

6.4. Physical Considerations: Strongly Correlated Systems

At this point it is perhaps useful to bring back the opening theme of

our discussion, i.e., semiclassical gravity as mesoscopic physics, and examine
similar concerns.

To practitioners in condensed matter and atomic/optical physics, mesos-

copia refers to rather specific problems where, for example, the sample size

is comparable to the probing scale (nanometers), or the interaction time

is comparable to the time of measurement (femtoseconds), or the electron
wavefunction correlated over the sample alters its transport properties, or

the fluctuation pattern is reproducible and sample-specific. Take quantum

transport. Traditional transport theory applied to macroscopic structures is

based on kinetic theory, while that for mesoscopic structures is usually based

on near-equilibrium or linear response approximations (e.g., Landauer±

BuÈ tiker formula). New nanodevice operations involve nonlinear, fast-
response, and far-from-equilibrium processes which are sensitive to the phases

of the electronic wavefunction over the sample size. These necessitate a new

microscopic theory of quantum transport. One serious approach is using the

Keldysh method in conjunction with Wigner functions (e.g., ref. 105). It is

closely related to the closed-time-path formalism we developed for nonequi-

librium quantum fields aimed at similar problems in the early universe and
black holes [96].

Now focusing on the issue of correlations and quantum coherence while

using the analogy with mesosystems, we see that what appears on the right-

hand side of the Einstein±Langevin equationÐ the stress-energy two-point

functionÐ is analogous to conductance, which is given by the current±current

two-point function. What this means is that we are really calculating the
transport function of (the matter particles as depicted by) the quantum fields.

Following Einstein’ s keen observation that spacetime dynamics is determined

by (while it also dictates) the matter (energy density), we expect that the

transport function represented by the current correlation in the matter (fluctua-
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tions of the energy density) would also have a geometric counterpart and

equal significance at a slightly higher energy scale. The hydrodynami c anal-

ogy given earlier also makes sense here: Conductivity, viscosity, and other
transport functions are hydrodynamic quantities. For many practical purposes

we do not need to know the details of the fundamental constituents or their

interactions to establish an adequate depiction of the low- or medium-energy

physics, but can model them with semiphenomenological concepts (like mean

free path and collisional cross sections). In the mesoscopic domain the sim-

plest kinetic model of transport using these concepts is no longer accurate.
One needs to work with system±environment models and keep the phase

information of the collective electron wavefunctions. When the interaction

among the constituents gets stronger, effects associated with the higher corre-

lation functions of the system begin to show up. Studies in strongly correlated

systems are revealing in these regards [68, 105 ]. For example, fluctuations

in the conductanceÐ from the four point function of the currentÐ carry
important information such as the sample-specific signature and universality.

Although we are not quite in a position, technically speaking, to calculate

the energy-momentum four-point function, thinking about the problem in this

way may open up many interesting conceptual possibilities, e.g., what does

universal conductance fluctuations mean for spacetime and its underlying
constituents? In the same vein, I think studies of nonperturbative solutions

of gravitational wave scattering [106 ] will also reveal interesting information

about the underlying structure of spacetime (beyond the hydrodynamic realm).

Thus, viewed in the light of mesoscopic physics, with stochastic gravity we

are really begining to probe into the higher correlations of quantum matter

and with them the associated excitations of the collective modes in
geometrohydrodynamics.12

7. TOWARD QUANTUM GRAVITY

I now integrate what I discussed in the above and enumerate possible

activities at the Planck scale, related to the three aspects of fluctuations,

correlation, and collectivity.

12 Of course, walking along this pathway, it will still take a while before one sees the microscopic
quantum pictureÐ the constituents of spacetime, like electrons in quantum transport. One
may indeed never see it, because one needs to seek a set of variables for the basic constituents
different from those for the collecive modes. But as far as what low-energy observers can
decipher, these collective phenomena are all that one can observe and the hydrodynamic
quantities such as the transport functions and their derived constructs actually offer a better
set of variables for their description since the equations and the physics are simpler.
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7.1. Quantum Tunneling, Particle Creation, and Phase Transition at
the Planck Scale

The Langevin equation description of semiclassical gravity opens up a
new horizon at the juncture of general relativity and quantum gravity theories

in that it enables one to examine the properties of fluctuations in the quantum

matter fields and their effect on the stability of the classical spacetime

structure.

At the Planck scale when quantum effects of gravity become significant,
physical laws as well as the structure of spacetime and matter may undergo

fundamental changes in form and content. Many such changes could be the

outcome of phase transitions. The study of Planck-scale phase transitions

is thus of fundamental theoretical value. Near the Planck time when the

gravitational field is strong and when spacetime geometry changes drastically,

vacuum particle production is abundant, and any phase transition would
likely be accompanied by particle production. In treating Planck-scale phase

transitions, not only is the effective potential ill defined, because the back-

ground field changes in time, but the background field splitting often assumed

in the derivation of the effective Lagrangian would become ineffective

(because the background field can change as much as, and as fast as, the

fluctuation fields). In such cases (or in cases where global properties of
spacetime like boundary or topology are involved), one would need to use

nonperturbat ive methods such as instanton solutions (in Euclidean formalism).

However, to incorporate statistical processes one needs a real-time description.

It is difficult to join these two worlds, but if we can (say, using a new route

via Langevin or Fokker ±Planck or master equations), we will be able to

deal with a wider range of issues. Phase transition in the form of spinodal
decomposition as applied to defect formation is currently under investigation

[107 ]. Here I would like to comment on the process of nucleation via quantum

tunneling in relation to stochastic gravity.

7.1.1. Tunneling and Particle Creation as Vacuum Decay

My view is that both tunneling and particle creation are manifestations

of vacuum instability, but with different setup of boundary conditions for

these two processes. (The tunneling probability and the probability for finding

a pair of particles created are both given by the imaginary part of the effective

action.) While in a tunneling problem the system transits from one definite

(metastable) state to another, in particle production (from dynamic spacetimes)
it is a continuous change from an initial vacuum to a final vacuum, with

inequivalent Fock spaces at all intermediate states. One can formulate this

problem first in the setting of quantum mechanical potential scattering using

Bogolubov transformations, and then in the effective action formalism via



3026 Hu

vacuum persistence amplitudes. The advantage of this unifying view is that

many aspects of tunneling can be addressed by established methods of treating

particle creation.

7.1.2. Tunneling with Particle Creation: Dynamics and Dissipation

If particle production occuring during tunneling is not strong enough to

disrupt the tunneling process, one can treat this as a test-field problem.

Rubakov [108 ] first attempted this problem with a nonunitary Bogolubov
transformation (I do not find this method so agreeable; see also criticism by

Vachaspati and Vilenkin [109]). I prefer to use a real-time approach and treat

particle creation in the fluctuation fields as parametric amplification by the

background field (as one encounters in the postinflation reheating problem

[110]). If the particle creation is so strong as to alter the tunneling process,

one needs to take the backreaction into consideration and solve the `dynamics’
of tunneling and particle creation self-consistently. Since particle creation

can be viewed as a dissipative process, this becomes a problem of tunneling

with dissipation [111 ]. One can apply stochastic field theory for its treatment

where dissipation and noise are manifest. Insofar as particle creation is a

form of amplified quantum noise, the interesting processes of stochastic
resonance and noise-induced transitions could also shed light on this issue.

7.1.3. Tunneling and Decoherence in Quantum Cosmology

Vilenkin has proposed a tunneling boundary condition in quantum cos-

mology in the so-called `birth of the universe’ scenario [112 ]. What is the
effect of particle creation on the tunneling wavefunction? Would dissipation

terminate the tunneling process and give a `still birth’ of the universe? Does

it make sense to talk about matter `before’ (Euclidean time!) the universe?

One can investigate this issue in the context of minisuperspace quantum

cosmology by studying the effect of dynamics on quantum fluctuations (of

matter fields and spacetimes) during tunneling. A related problem is decoher-
ence and tunneling: Could vacuum fluctuations induce a quantum-to-classical

transition in the tunneling wave function of the universe, giving rise to a

semiclassical regime with desirable attributes which could generate our own

universe, or will dissipation alter the picture irrevocably? One can incorporate

results on dissipative tunneling into earlier studies of decoherence with back-

reaction in quantum cosmology (e.g., Paz and Sinha [6 ]). In adopting the
influence functional scheme, one would be working with the density matrix

of the universe, and the propagators of the reduced density matrix would be

replacing the $ matrix of Hawking and Page [113, 114 ] (similar in-out and

in-in boundary condition difference would matter). This would also offer a
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new angle toward the issues of unitarity and information loss in quantum

gravity.

7.1.4. Tunneling with Topology Change

Just as particle creation occurs when vacuum fluctuations of a quantum

field get strong, pair creation of black holes may become important when

metric fluctuations are large. One expects topology change in the spacetime

to occur at the Planck energy via tunneling. This is also part of the activity
in a spacetime foam which has been studied by Hawking and his associates

for a long time (see references in Section 7.5). In approaching these problems

usually one defines the end states in terms of Lorentzian geometry and

describes the tunneling process by the Euclidean instanton method. Finding

the joining solution between two end states is not simple, though, as it is not

so well defined.
Similar to particle creation, one may expect to cast black hole pair

creation as a dissipative process. If so, one would also need to work in real-

time dynamics. The backreaction of these pair creation processes is expected

to be strong at the Planck energy. So the same set of issues will arise as

before. For example, how would pair production of particles and black holes

associated with topology change alter the tunneling rate and the topology
change itself? Our current understanding has not reached this level of sophisti-

cation, but these are important issues to think about.

7.2. Nucleation of Black Holes from Curved Spacetime and Growth
of Fluctuations and Forms

From earlier discussions we see that vacuum instability and phase transi-

tion may play an important role in revealing the structure of spacetime at

the Planck scale. Ideally we wish to first formulate a quantum field-theoretic

description of nucleation problem for first-order phase transitions in general,

and then examine specific and related problems in gravity such as nucleation

of black holes from hot flat space [61 ] or black hole pair creation in a de
Sitter universe [125 ]. The first problem was studied by a number of authors

in the 198 0s [61, 115, 116 ] using Euclidean instanton methods to calculate

the probability of nucleation. If one could cast this problem in the form of

a Langevin or Fokker ±Planck equation, one could reexamine this process as

a dynamical critical phenomenon in real time. Similarly we wish to carry

out a first-principles quantum field-theoretic description of spinodal decompo-
sition for the second-order phase transitions. We have just started this latter

project with application to defect formation in the early universe [107 ].

Advances in far-from-equilibrium sciences in the last decade show that

correlations and noise in nonlinear systems are responsible for a great variety
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of structures and forms [117, 118 ]. Planck-scale fluctuations can be the

germinating source for large-scale structures in the universe. Noise-induced

phase transition is an important class of problems originally studied by Kramer
for chemical kinetics. It is now applied with techniques from stochastic

gravity by Calzetta and Verdaguer [40] to the early universe. They found the

probability of a universe making such a phase transition to be very close to

that of quantum tunneling studied earlier by Vilenkin [112 ] in the so-called

`birth of the universe from nothing’ scenario. I only wish to add one observa-

tion. The proximity of these two results appears to me not a plain accident.
Let us ponder the relation between noise-induced transition versus quantum

tunneling. While the former usually refers to thermal noise (at finite tempera-

ture) in an environment, the latter refers to quantum noise (vacuum fluctua-

tions). Even though one does not stipulate an environment for quantum

tunneling, quantum fluctuations are ubiquitous and free (not quite: they are

attached as the coarse-grained leftovers from activities in the high-energy
sector, as reflected in some generalized uncertainty principle). So the real

difference is between thermal and vacuum fluctuation-induced effects. The

relation between these fluctuations in terms of their effect on decoherence

has been studied [119, 12 0] in the context of finding an uncertainty relation

at finite temperature. Looking at the problem in another way, in terms of the
correlation hierarchy, quantum mechanical description invokes only the low-

est order correlations. At higher energy or with finer resolutions, higher order

correlations will partake more in the tunneling or transition process. One can

use the Schwinger±Dyson hierarchy and correlation noise to put quantum

and thermal fluctuations on the same footing. Neither of them needs an

environment nor a temperature stipulation. If we can relate these two classes
of processes (quantum and statistical mechanical) we may find a way to deal

with particle creation and tunneling togetherÐ quantum or noise-inducedÐ in

a unified real-time formalism.

7.3. Wave Propagation in Random Geometry and Simplicial Gravity

In a recent paper Hu and Shiokawa [121 ] studed some novel effects

associated with electromagnetic wave propagation in a Robertson±Walker

universe and the Schwarzschild spacetime with a small amount of metric

stochasticity. By showing the formal equivalence of the wave equations in

curved spacetimes with (flat space) wave propagation in a material medium

and identifying the dependence of the refractive index on the metric compo-
nents, one can introduce metric fluctuations as a stochastic component in the

permittivity function and borrow the insights from known results of wave

propagation in random media. We find that localization of electromagnetic

waves occurs in a Robertson±Walker universe with time-independent metric
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stochasticity, while time-dependent metric stochasticity induces exponential

instability in the particle production rate. For the Schwarzschild metric,

time-independent randomness can decrease the total luminosity of Hawking
radiation due to multiple scattering of waves outside the black hole and gives

rise to event horizon fluctuations and thus fluctuations in the Hawking

temperature.

In that work the source of metric stochasticity is represented by a

stochastic component in the permitivity function. It is desirable to give a

microscopic derivation of metric stochasticity. Stochastic components in the
metric can be induced by primordial gravitational waves, topological defects

on the sub-Planckian scale, or intrisic metric fluctuations of background

spacetimes at the Planck scale. We should be able to calculate these compo-

nents with the help of stochastic gravity. Their detection and analysis can

provide valuable information about the state of the early universe and black

holes. After this one can probe wave propagation in random geometry itself
[88] via random potentials. Eventually one should connect this to simplicial

gravity [86 ]. In addition to seeking the continuum limit from discrete geome-

tries, it is of interest to examine if a possible disorder±order transition can

arise from stochastic spacetimes, and whether one could use this to divide

the effective (low-energy, ordered, or smoothed-out phase of) spacetime into
universality classes.

7.4. Planck-Scale Resonance States

Following the progression from hydrodynami cs to kinetic theory and

quantum microdynamics, one may ask if there could exist quasistable struc-
tures at energy scales slightly higher than (or observation scales finer than)

the semiclassical scale. Assuming that string theory is the next-level micro-

theory, do there exist quasistable structures between that and general relativ-

ity? This is like the existence of resonance states (as quasistable particles)

beyond the stable compounds of quarks (baryons) or quark±antiquarks

(mesons). Viewed in the conceptual framework of kinetic theory, there could
exist such states if the interparticle reaction times (collision and exchange)

and their characteristic dynamics (diffusion and dissipation) become commen-

surate at some energy scale. (Turbulence in the nonlinear regime could show

up in these intermediate state.) In the framework of decoherent history dis-

cussed above, it could also provide metastable quasiclassical structures. It

would be interesting to find out if such structures can in principle exist around
the Planck scale. This question is stimulated by the hydrodynamic viewpoint,

but the resolution would probably have to come from a combination of efforts

from both the top-down and the bottom-up approaches. Deductions from

high-energy string theories would also benefit from knowing what different
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collective states are likely to exist in the low-energy physics of general

relativity and semiclassical gravity.

7.5. Spacetime Foams

The beautiful and alluring ideas of Wheeler [42 ] on metric fluctuations

and spacetime foams have only seen intermittent meaningful developements

in the last 35 years since it was conceived, foremost by Hawking and his

associates. Hawking’ s work on quantum gravitational bubbles [122 ], worm-
holes and baby universes [123 ], virtual black holes [124 ], and black hole

pair creation [125 ] provided a solid base for such inquires. At the Planck

scale geometric and topological fluctuations of spacetime are expected to be

important. At a scale close to but larger than the Planck scale, stochastic

gravity can provide a good physical depiction. The extensively developed

tools and concepts there can help one treat the coarse-grained state of these
`building blocks’ of spacetime foams and come up with quantitative descrip-

tions and predictions for low-energy phenomenology. Metric fluctuations

induced by quantum matter fields (including gravitons) in the backreaction

problems we have studied so far offer perhaps the simplest and the most

ubiquitous type of ingredient in the spacetime foam. We know them quantita-
tively by the noise or the correlation functions (see examples given at the

beginning for weakly inhomogeneous cosmological spacetimes and far-field

thermal black hole background). The use of open system concepts enables

one to view them as thermal baths [126 ] in the most naive approximation

such as in the Fokker ±Planck limit (Markovian behavior at high-temperature

Ohmic bath in the case of bilinear coupling between the system and bath),
but one lesson we learned from stochastic gravity is that these `noises’ are

by no means trivial, as they contain precious information about the substruc-

tures and their constitution at a higher energy level. It would be interesting

to examine the low-energy remnants of the other types of spacetime foams

mentioned above. If we view them as an environment interacting with the

classical geometry (which actually is the mean value taken with respect to
all possible stochastic source distributions) and study their behavior with the

right model in nonequilibrium statistical mechanics, we can get a rich physical

picture with quantitative information (dissipation, diffusion, correlation,

decoherence). For example, virtual black holes can, according to a recent

suggestion [126 ], be representated at low energy by effective bilocal cou-

plings. Hawking et al. reasoned that spacetime is made up of three kinds of
basic building blocks of topological class, S 2 3 S 2, K 3, and CP2, and gravita-

tional bubbles are believed to be their quantum fluctuations. It is not easy

to deal with these topological fluctuations, but in an effective description the

vertex for the bubble scattering can be viewed as arising from the exchange
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of a very large number of gravitons. From this one can construct an open

system model for multigraviton exchange and come up with a stochastic

gravity version of this type of spacetime foam contribution. Wormholes are
more complicated, as they are multiply connected. One can perform the same

low-energy reduction even for D-branes and talk about a D-foam background

[127 ]. Even though these calculations cannot tell us the details of the basic

constituents of spacetime, Planck-scale spacetime fluctuations are a direct

result of the activities of these substructures. Since they will affect all the

physics happening at lower energies, they are worthy of much closer scrutiny.
It is the only hope for us earthlings confined by the shackles of low energy

to fathom the blue yonder.
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